Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Composite Panel Products – Division 6 Materials & LEED® Credits

This course will equip participants to compare features, benefits and limitations of particleboard and medium density fiberboard (MDF) with considerations of product grades and their physical properties for proper end-use selection.

Learning Objective 1:
To help students understand the health benefits of composite products and how testing is an essential means to verify performance.

Learning Objective 2:
To explain to attendees the alternative resin technologies used in the manufacturing process.

Learning Objective 3:
To help students to become familiar with various composite panel products and their environmentally-friendly make-up.

Learning Objective 4:
To familiarize attendees with the variety of ways that composite panels contribute to LEED credits.

...Read More

New Principles in Hospitality Design Using Opening Glass Walls

This course explores the impact of the COVID-19 pandemic on design and construction decisions, particularly focusing on operable glass walls in interior and exterior applications, primarily in the hospitality industry. Students will gain familiarity with terminology, capabilities, and uses of operable glass walls, with an emphasis on addressing health concerns post-pandemic through responsive design. The course highlights how operable glass walls contribute to improving the health, safety, and well-being of building occupants while also providing psychological benefits by creating comfortable environments. Practical design concepts applicable to various commercial projects will be covered, with direct access to manufacturer resources for further assistance.

 

Learning Objective 1:
You will be able to identify and recognize the significance of the health concerns related to the COVID-19 pandemic as they relate to building design and product selection.

Learning Objective 2:
You will learn how to assess the safety aspects of incorporating design and product selections that protect buildings, occupants, and owners from harm and damage, particularly in light of unexpected violence and vandalism.

Learning Objective 3:
You will be able to explain the welfare aspects of design and product selection that enable equitable access to all, can elevate the human experience with daylight and outdoor access, and benefit the environment through sustainable building design.

Learning Objective 4:
You will be able to determine ways to incorporate the design principles as presented into different building types and applications.

...Read More

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

Selecting and Specifying a Railing System for your Building Project

This course provides an overview of the important factors - such as building codes, safety of use and fall protection, material selection, secure installation methods, and design - that must be considered when selecting or specifying a railing system for a commercial or residential project.

Learning Objective 1:
The student will learn to recognize the unique benefits of different railing materials with respect to durability and sustainability.

Learning Objective 2:
The student will learn to understand relevant building codes and standards related to the structural integrity and safety of a railing project.

Learning Objective 3:
The student will learn to identify common railing materials and finishes, and compare their performance in order to choose materials that best suit the structural requirements, style, and environment of the project.

Learning Objective 4:
The student will learn to distinguish between a variety of railing fabrication, assembly, and installation methods to ensure a safe and attractive railing design.

...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

HSW Justification:
“Increased evidence shows that indoor environmental conditions substantially influence health and productivity. Building services engineers are interested in improving indoor environments and quantifying the effects. Potential health and productivity benefits are not yet generally considered in conventional economic calculations pertaining to building design and operation. Only initial costs plus energy and maintenance costs are typically considered. A few sample calculations have also shown that many measures to improve indoor air environment are cost-effective when the health and productivity benefits resulting from an improved indoor climate are included in the calculations (Djukanovic et al. 2002, Fisk 2000, Fisk et al. 2003, Hansen 1997, van Kempski 2003, Seppanen and Vuolle 2000, Wargocki, 2003.) This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the built environment.

Learning Objective 1:
Explain how air circulation improves thermal comfort and alertness.

Learning Objective 2:
Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

Learning Objective 3:
Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

Learning Objective 4:
Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

Learning Objective 5:
Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

The Implications of Light Pollution and the Impact of IDA

This course will discuss light pollution and its relation to the International Dark-Sky Association. After taking this course, individuals will know the impacts of light pollution as well as the difference between IDA and non-IDA lighting.

At the end of this course, participants will learn:

  1. To define IDA, light pollution, and related terms
  2. To identify the impacts of light pollution
  3. To demonstrate the difference between IDA and non-IDA lighting
  4. To assess the process of establishing IDA certification
...Read More

Bird Friendly Glass Solution

Architecture tells us a great deal about society. In fact, glass and glazing are used to blur the lines between inside and out, helping elevate performance and the experiences of people. Yet while humans can use environmental cues to identify glass as a barrier, there is growing realization that birds cannot. The solution is bird-friendly glass that delivers on performance, energy efficiency and the needs of people. This course from Guardian Glass is intended to provide the basis for a better understanding of how to recognize issues affecting the bird population while learning about best practices and design fundamentals for smarter, safer buildings.

...Read More

Egress Marking and Illumination ISO-0501

This course is designed to introduce the architect to egress marking systems that are used for ordinary way finding and building evacuation in emergency situations. These signage systems are meant to be selected and installed according to specific standards established by building codes. Additionally, once installed, these systems must be tested to assure their efficacy in case of an emergency. How to select and specify the appropriate markers and the technological solutions available, as well as testing methods, will all be covered in this course.

HSW Justification:
Building exit markings are critical to the health, safety, and welfare of building occupants during emergency situations.

Learning Objective 1:
When this course is complete the student will will understand egress signage obligations as imposed through building codes and standards.

Learning Objective 2:
The student will further understand the various technologies available to address those signage codes and standards.

Learning Objective 3:
And, the student will learn what the requirements are to conduct on-going testing of egress systems after installation.

...Read More

Reducing Fire Risk at the Perimeter of High Rise Structures

High rise fires are not new to us. In fact, we have seen an increase in fire incidents in Asia, Europe, and the Middle East in the last 5-10 years that have amplified awareness on fire safety performance of taller structures. High rise buildings present a greater risk with an increased number of occupants that have a limited means of escape in the event of a fire. That is why the time element for containing a fire is so critical. Also, as we have seen in actual fires, vertical fire spread at the exterior façade can rapidly overwhelm fire fighters means of interceding the fire from ground level. As the fire accelerates and upward spread progresses, it often reaches a height beyond the reach of fire services water streams. That is why containing a fire and preventing it from spreading vertically is so critical for both occupant and first responder safety.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×